
Text classification with LLMs

Jean-Baptiste GIDROLa

aData Science Pole, OpenClassroom in partnership with CentraleSupélec,

Abstract

In the evolving landscape of natural language processing, the application of large language models (LLMs) such as GPT-3.5 and
GPT-4 offers a fresh perspective on text classification tasks. In my research, I looked into using LLMs to categorize product names
into seven predefined categories. Through meticulous instruction and consideration in answer formatting, I attempted to harness
the capabilities of GPT-4. For a more rounded understanding, I compared my results with well-established text transformation
techniques, including TfidfVectorizer, Word2vec, BERT, and USE. My observations indicate that while LLMs are promising, the
essence of obtaining valuable outcomes is in presenting them with the right context and sculpting their responses effectively.
This comparison not only highlights the potential of LLMs but also underscores the nuances of engaging meaningfully with these
advanced models. Through this paper, I hope to offer insights and reflections to the broader community, emphasizing the practicality
and intricacies of deploying LLMs. All associated notebooks and materials for this research can be accessed at the following
repository: https://github.com/Noxfr69/Text_image_classification.

Keywords:
Large Language Models (LLMs), Text Classification, Contextual Interaction, Traditional Text Transformation Techniques

1. Introduction

Text classification, an integral sub-field of Natural Language
Processing (NLP), has traditionally employed a plethora of
techniques to categorize text into defined groups or classes.
These techniques, ranging from simpler word counting meth-
ods to more sophisticated embeddings, have proven their utility
over time. However, with the advent and subsequent iterations
of Large Language Models (LLMs) like GPT-3.5 and GPT-4,
there arises a potential paradigm shift in how we approach text
classification tasks.

Given the innate capability of LLMs to understand context
and produce human-like textual responses, this research ex-
plores the efficacy of using such models, specifically GPT-4, to
classify product names into predefined categories. More than
a mere experiment, this paper aims to understand the nuances
of engaging with LLMs, emphasizing the importance of pro-
viding them the right context and appropriately formatting their
outputs.

While traditional techniques remain valuable for a range
of applications, understanding the comparative strengths and
weaknesses of LLMs in the realm of text classification can of-
fer significant insights. By juxtaposing LLMs with established
text transformation techniques, this paper aims to illustrate the
approach to text classification using GPT, offering insights and
practical methods that readers can experiment with in their own
endeavors.

2. The dataset

Our dataset consists of 1,050 items listed on an online shop,
each accompanied by its respective category, product name,

and product description. It’s important to note that this dataset,
like many real-world datasets, is not without its imperfections.
There may be instances where items are categorized inaccu-
rately. However, the primary objective here is not to achieve
perfect classification but to use this dataset as a consistent base-
line. By doing so, we aim to compare the performance of var-
ious algorithms and discern if one method significantly out-
shines the others in terms of classification accuracy.

2.1. Data Limitations and Token Constraints
In our analysis, we utilize both the product name and product

description when employing conventional algorithms. How-
ever, when turning our attention to large language models, es-
pecially those accessed through paid APIs, we encounter prac-
tical constraints. Specifically, these models come with token
limitations, which directly influence the cost associated with
their usage. Given these limitations, and to maintain feasibility
in terms of both computation and expenses, we’ve decided to
exclusively use the product name for our experiments with the
GPT model.

3. Chat approach

In the vast expanse of literature surrounding natural lan-
guage processing, the mechanics, architecture, and intricacies
of large language models (LLMs) like GPT variants have been
discussed extensively. Furthermore, the functional aspects of
’ChatGPT’ and its implementations are now well-established
within the academic and developer communities. Given
this backdrop, I’ve decided to refrain from revisiting these
foundational topics, as they’ve been comprehensively covered

https://github.com/Noxfr69/Text_image_classification

Figure 1: Asking chatgpt for classification

in previous works. Instead, this paper will pivot directly to
the heart of the matter at hand: setting up a classification
problem using an LLM, delving into the nuances, strategies,
and insights that can assist others in similar endeavors.

In the preceding figure 1, we illustrate the process of request-
ing ChatGPT to classify a product among seven distinct cate-
gories. By now, the capability of this model to perform such
tasks is well-acknowledged, and it’s intuitively understood that
leveraging ChatGPT offers a viable method for text classifi-
cation. However, while the interactive chat format is insight-
ful, it’s impractical for large-scale applications. Manually in-
putting each product individually is not only tedious but also
time-consuming. Furthermore, one of the significant challenges
with ChatGPT and similar LLMs is the consistency of their out-
put, making the extraction and utilization of results particularly
challenging

4. Setting up a Classification Task with LLMs

Before diving deep into the application of Large Language
Models (LLMs) like GPT for text classification, it is pivotal to
ensure the foundational tools and configurations are appropri-
ately set up. Our primary channel to communicate with the GPT
models is through OpenAI’s API, a powerful interface tailored
to interact seamlessly with these mammoth models.

import openai

import json

import pandas as pd

openai.api_key = OPENAI_API_KEY

For those new to this, it’s imperative to ascertain that all nec-
essary Python libraries are present in your environment. If you
find any missing, a simple pip installation should suffice:

pip install openai pandas

However, a word of caution is warranted here. The placeholder
OPENAI-API-KEY needs to be replaced with your unique API
key associated with your OpenAI account. While many might
assume that a subscription to GPT-4 covers all costs, the reality
is a tad different. OpenAI’s API usage, especially for extensive
tasks, incurs additional charges. It’s always a prudent strategy
to stay updated with OpenAI’s latest pricing policies to prevent
any unexpected expenses.

Certainly! I’ll provide a more detailed and comprehensive
breakdown of the ChatCompletion.create() function and its in-
tricacies.

4.1. Designing the Query for GPT
Engaging with GPT, particularly the chat-orientated ver-

sions, demands a meticulous and informed approach to crafting
the right queries. As illuminated by Törnberg (2) in his de-
tailed exploration on utilizing LLMs for text analysis, the nu-
ances of building a potent ChatCompletion.create() query
are paramount. This function, a centerpiece of the OpenAI API,
facilitates a dynamic conversation with GPT, mirroring a chat
interface:

response = openai.ChatCompletion.create(

model="gpt-3.5-turbo",

messages=[

{"role": "system", "content": "You

are a helpful assistant."},

{"role": "user", "content": "Hello

, assistant."},

{"role": "assistant", "content": "

Hello! How can I assist you

today?"},

{"role": "user", "content": "

Classify this product: XYZ"}

]

)

The Conversational Structure:

• Roles: We interact with three key roles in our setup: ‘sys-
tem‘, ‘user‘, and ‘assistant‘. The ‘system‘ provides high-
level directives for the conversation, ‘user‘ sends queries,
and the ‘assistant‘ (GPT) furnishes the responses.

• Conversation Flow: This method encourages a dialogic
style. Previous messages influence GPT’s context and re-
sponse, enabling the user to reference earlier messages or
elucidate statements, akin to standard chat interactions.

• Message Composition: Each message is a dictionary with
a role and content. The ‘role‘ indicates the sender, while
‘content‘ provides the textual message.

Crafting Effective Queries:

• Initiating Conversations: Starting with a directive, such
as a system message, can steer the conversation. Simple
greetings can also enhance response quality.

2

• Contextual Understanding: The conversation’s history is
crucial. GPT retains earlier context, enabling coherent re-
sponses to user references.

• Guidance and Specificity: Clear and direct user requests
yield more precise responses. Ambiguities might lead to
broad answers.

Model Selection: The ‘model‘ parameter lets users specify
the GPT version. Here, ”gpt-3.5-turbo” is chosen. In this pa-
per we will look to compare the result of ”gpt-3.5-turbo” and
”gpt4”

In summation, the ChatCompletion.create() function
offers a dynamic medium to exploit GPT’s capacities. Proper
chat structuring significantly influences the response’s rele-
vance and quality.

4.2. Handling Varied Outputs from ChatGPT and Other LLMs

The flexibility inherent to LLMs can be both a boon and a
challenge. Their ability to generate diverse outputs suits many
applications, but when it comes to tasks that require consistent
and specific outcomes, such as classification, we must navigate
them with precision.

Simon Willison, a notable figure in the realm of program-
ming and web technologies, remarked, ”LLMs are very good
at returning format like JSON, which is really useful for writ-
ing code that uses them” (1). Building upon this insight, one
effective strategy when working with GPT and similar mod-
els is to guide the output towards a well-defined structure, like
JSON. Instructing GPT to produce a structured response, such
as "category": "electronics", not only guarantees con-
sistency but also simplifies subsequent data handling processes.

An additional layer of control over the model’s output is pro-
vided by the temperature setting. A higher value introduces
more variability, harnessing GPT’s creative potential, while a
lower value ensures a more predictable and deterministic re-
sponse.

Furthermore, the strategy of guiding outputs towards well-
defined structures like JSON can synergize well with the con-
cept of batch prompting, as explored in the paper ”Batch-
Prompt: Accomplish more with less” by Lin et al. (3). In our
specific application, each JSON line or key-value pair could be
conceived as a singular prompt within a larger batch. By struc-
turing prompts in this manner, we not only enhance the compu-
tational efficiency but also enforce a level of consistency across
the outputs.

5. Understanding ChatCompletion Output

Having now grasped the essentials of making an API call,
our focus turns to the effective utilization of the response or
output derived from the API. Upon initiating the API call, GPT
responds with a data structure that encapsulates its response,
among other details.

To visualize the raw output from the model, one might em-
ploy:

print(response)

The resultant output has the following structure:

{

"choices": [

{

"finish_reason": "stop",

"index": 0,

"message": {

"content": "this XYZ product is in

the category X",

"role": "assistant"

}

}

],

"created": 1692435805,

"id": "chatcmpl-7

pC9dUgRf0X7CnsnLHYFJPJHiQFWD",

"model": "gpt-3.5-turbo-0613",

"object": "chat.completion",

"usage": {

"completion_tokens": 37,

"prompt_tokens": 195,

"total_tokens": 232

}

}

A brief rundown of the key components:

• choices: Contains the primary output message from the
assistant. Nested within, the ‘content‘ key provides the
model’s response.

• created: A timestamp indicating the time of response cre-
ation.

• id: A unique identifier for the API call.

• model: Indicates the specific GPT model version used for
the response.

• usage: Details about token consumption, broken down
into completion tokens, prompt tokens, and the total.

For most applications, the primary focus is on the ‘con-
tent‘ within the ‘choices‘ segment. However, understanding
the complete structure is invaluable for comprehensive response
handling and potential debugging.

5.1. Accessing the Message Content

In most interactions with GPT via the OpenAI API, the
model typically returns a single response or ”choice”. This
streamlined response pattern simplifies the extraction process
for the primary content of interest.

3

To extract the content or answer string from the response:

content = response.choices[0].message.

content

print(content)

Executing the above will display the model’s generated re-
sponse. In our example, the output will be:

”this XYZ product is in the category X”

This enables straightforward further processing or direct uti-
lization. Note that this assumes a singular choice in the model’s
reply. If multiple choices are specified when making the re-
quest, it’s prudent to iterate over each choice and process them
individually.

6. Building the Text Classification Logic

Having grasped the intricacies of the OpenAI API, it’s clear
that our input needs to be string-based, given that we can’t di-
rectly send dataframes. Yet, by manipulating our data appro-
priately, we can make this process smooth, efficient, and quite
enjoyable!

6.1. Building the Input

Our primary task is to convert the data from the dataframe
into a format GPT can understand and process. We want to
extract product names and associate them with a unique index,
creating a serialized string of products:

Convert the product_name column into a

numbered list format

formatted_product_names = [f"{i}: {x}" for

i, x in enumerate(text_data[’

product_name’].head(5))]

Convert the entire series into a single

string

products_string = ’, ’.join(

formatted_product_names)

The resultant string appears as:

’0: Elegance Polyester Multicolor Abstract Eyelet
Door Curtain, 1: Sathiyas Cotton Bath Towel, 2: Eu-
rospa Cotton Terry Face Towel Set, 3: SANTOSH
ROYAL FASHION Cotton Printed King sized Dou-
ble Bedsheet, 4: Jaipur Print Cotton Floral King sized
Double Bedsheet’

6.2. Setting the Context Right
The essence of unlocking GPT’s full potential lies predom-

inantly in the art of crafting the right dialogue or, more aptly,
the ’prompt’. Ensuring that our instructions to GPT are both
clear and precise is crucial, as the model’s performance hinges
on the specificity and clarity of these directives. By introducing
a system role at the outset, we grant the assistant an overarching
orientation, a compass of sorts, guiding its responses in the de-
sired direction. It’s not just about telling the model what to do,
but more importantly, setting the stage for how to think about
the task at hand. Here’s the magic unravelled:

messages=[

{"role": "system", "content": "You are

a helpful assistant tasked to

classify text into 7 categories."

},

{"role": "user", "content": "Here is a

list of the categories: 1: Baby

Care, 2: Beauty and Personal Care,

3: Computers, 4: Home Decor &

Festive Needs, 5: Home Furnishing,

6: Kitchen & Dining, 7: Watches"

},

{"role": "assistant", "content": "How

should I format my answer?"},

{"role": "user", "content": "Answer in

a JSON formatting style {\"

sentence index\" : category number

}"},

{"role": "assistant", "content": "Okay

, give me sentences to categorize"

},

{"role": "user", "content": f"{

products_string}"}

]

Remember, it’s not just about posing a question; it’s about
sculpting the context in which GPT operates, ensuring it aligns
perfectly with our objectives. Prompting is what makes or
breaks the use of these incredible models. They are not merely
’prompting tricks’; it’s really the essence of LLMs. You can
even liken it to hyperparameters tuning.

6.3. Handling JSON Output
The beauty of our interaction is that we’ve guided the model

to return a JSON formatted output. Parsing this becomes a
breeze:

result = {}

result = json.loads(response.choices[0].

message.content)

print(result)

4

The results are pretty cool if I can say so myself:

{’0’: 4, ’1’: 1, ’2’: 1, ’3’: 4, ’4’: 4}

Can you grasp the elegance? We’ve just harnessed the raw
power of GPT, parsed our text, and got classified results in an
instant. The possibilities are both fascinating and endless!

7. Token Limitations

The token limitation is a critical aspect to consider when
working with Large Language Models (LLMs) like GPT-3.5
and GPT-4. Specifically, the GPT-3.5 model has a context win-
dow of 4K tokens, while the base version of GPT-4 offers an
8K token limit. This means that both the context and the input
strings cannot exceed these token limits.

Given the vast size of datasets commonly used in real-world
scenarios, it becomes crucial to handle this limitation effec-
tively. One approach is to partition the dataset and process it
in manageable chunks, ensuring that the token limits are not
breached.

i = 0

while i < text_data.shape[0]:

Take the text_data in chunks of 100

rows to stay within the token

limit

end_index = min(i + 100, text_data.

shape[0]) # Handle the scenario

with less than 100 rows left

Select the current chunk of data

current_chunk = text_data[’

product_name’].iloc[i:end_index]

formatted_product_names = [f"{idx+i}:

{x}" for idx, x in enumerate(

current_chunk)]

products_string = ’, ’.join(

formatted_product_names)

Here, we would make an API call with

the ’products_string’

response = openai.ChatCompletion.

create(.....)

Progress to the next chunk of data

i += 100

This partitioning method ensures that our application re-
mains efficient and doesn’t exceed the model’s token con-
straints. For a comprehensive look into this approach, includ-
ing other nuances and optimizations, please refer to the detailed
notebook available in the GitHub repository (4).

8. Exploiting the JSON Output

Once we’ve obtained our results using the methodology de-
scribed earlier, the next step is to process these results to de-
rive meaningful insights. This involves loading the obtained
JSON outputs, converting them into structured formats suitable
for comparison, and then conducting the actual comparison.

8.1. Loading and Structuring the Data

The results from both GPT-3.5 and GPT-4 can be fetched di-
rectly from the associated repository (4). For the purpose of this
section, we’ll be considering the GPT-4 results as an example:

Loading the GPT-4 results

with open(’./result_gpt4.json’, ’r’) as f:

result_gpt4 = json.load(f)

Converting the results into a DataFrame

for easier manipulation

df_classification_gpt4 = pd.DataFrame(list

(result_gpt4.items()), columns=[’

Product Index’, ’Category Number’])

8.2. Comparing with Ground Truth using ARI

With our predictions neatly structured in a DataFrame, it’s
time to compare them against the actual categories using met-
rics. One of the popular metrics for this task is the Adjusted
Rand Index (ARI). ARI measures the similarity between two
data clusterings, adjusted for chance. An ARI score of 1 indi-
cates perfect agreement, while a score of 0 suggests a random
assignment.

Calculating the Adjusted Rand Index

rand_index = adjusted_rand_score(text_data

[’product_category_tree’],

df_classification_gpt4[’Category

Number’])

print(f’Rand index for gpt4: {rand_index}’

)

By obtaining the ARI score, we get a quantitative measure
of how well the model’s predictions align with the actual cat-
egories. This allows for objective evaluations and facilitates
potential iterative improvements in the future.

9. Comparing results

Before we delve deep into our LLMs’ results, it’s essential to
revisit the foundational models that have been at the forefront
of text classification for years.

5

9.1. TfidfVectorizer

TfidfVectorizer is based on the principle that words which
appear frequently in a document, but not too often in many doc-
uments, are significant. It quantifies the importance of a term
in a document relative to a whole corpus, offering a numerical
representation that can be fed into classical machine learning
algorithms.

9.2. Word2Vec

Word2Vec is a step up in representing text. Instead of count-
ing word occurrences, it captures the semantics of words by
placing them in a high-dimensional space. In this space, words
with similar meanings are closer to each other. It’s a leap from
counting words to understanding them in context.

9.3. BERT

BERT reshaped the NLP scene by using bidirectional con-
texts to understand words in any given text. Pre-trained on vast
textual datasets, it’s a model that comprehends the subtle nu-
ances of language. The model can then be fine-tuned for spe-
cific tasks, showcasing its versatility.

9.4. USE (Universal Sentence Encoder)

The Universal Sentence Encoder goes beyond word repre-
sentations. It captures the essence of entire sentences, convert-
ing them into dense vectors. This model is particularly effective
when one needs a consistent and robust representation of text
without diving deep into individual word semantics.

9.5. Results grand reveal

With this foundational understanding, let’s see how these
tried-and-true models measure up against our latest entrants,
GPT-3.5 and GPT-4. The competition is indeed intriguing!

TfidfV
ec

tor
ize

r

W
ord

2v
ec

BERT
USE

GPT-3
.5

GPT-4

0.2

0.4

0.6

0.8

0.49

0.19

0.41
0.47 0.46

0.8

A
dj

us
te

d
R

an
d

In
de

x

Figure 2: Comparison of text classification models using ARI

The graph starkly illustrates the remarkable progress be-
tween GPT-3.5 and GPT-4. GPT-4’s performance surpasses not
only its predecessor but also most traditional models, showcas-
ing its prowess in text classification. It’s noteworthy to men-
tion that GPT-4’s results hint at an interesting possibility: we
might be at a juncture where the model’s predictions could be
considered more reliable than certain categorizations in imper-
fect datasets. GPT-4’s advanced capabilities suggest it might
discern nuances or correct errors that might elude many. This
underscores the transformative potential of such models in re-
fining and improving the quality of text-related tasks.

10. Conclusion

The world of Natural Language Processing has seen revolu-
tionary advancements in recent times, notably with the intro-
duction of Large Language Models (LLMs) such as GPT-3.5
and GPT-4. Our exploration into these models, especially in
the domain of text classification, offered insightful takeaways.

GPT-4, in particular, showcased a substantial leap in classi-
fication capabilities. Its performance, as quantified by the Ad-
justed Rand Index, not only surpassed its predecessor, GPT-3.5,
but also eclipsed several traditional models. This progression
in a single generational leap from GPT-3.5 to GPT-4 suggests a
promising trajectory for future iterations of the GPT series.

Traditional models, including TfidfVectorizer, Word2Vec,
BERT, and the Universal Sentence Encoder, have been foun-
dational in our understanding of text data. While they remain
relevant, the prowess of GPT-4 sets a new benchmark. Its adapt-
ability, combined with the power of prompt design, paints an
optimistic picture of its applicability across various textual do-
mains.

As the capabilities of LLMs continue to grow, there is in-
creasing hope that future models might evolve into comprehen-
sive solutions for diverse textual challenges. With the trend
observed from GPT-3.5 to GPT-4, it’s not far-fetched to envi-
sion subsequent models providing unparalleled text-related so-
lutions.

In summary, our exploration underscores the vast potential
of modern LLMs. As we anticipate further advancements, the
reliance on these models for holistic text-related tasks seems
not only feasible but inevitable.

Acknowledgements

I would like to thank my mentor during my master’s degree,
Benjamin Tardy, for his guidance and support. A special men-
tion goes to Shuai Wang from the Technical University of Mu-
nich for introducing me to the world of data science last year.
Additionally, appreciation is extended to Simon Willison for his
enlightening articles and videos on LLMs.

6

References

[1] Willison, S. (2023). The weird world of LLMs: Tips for us-
ing them. Retrieved from https://simonwillison.net/2023/Aug/3/

weird-world-of-llms/#tips-for-using-them

[2] Törnberg, P. (2023). How to use LLMs for Text Analysis. arXiv
preprint arXiv:2307.13106. Retrieved from https://arxiv.org/abs/

2307.13106

[3] Jianzhe Lin, Maurice Diesendruck, Liang Du, Robin Abraham.
(2023). BatchPrompt: Accomplish more with less. arXiv preprint
arXiv:2307.13106. Retrieved from https://arxiv.org/abs/2309.

00384

[4] Text Classification with LLMs. [githubrepo]. Available: https://

github.com/Noxfr69/Text_image_classification

7

https://simonwillison.net/2023/Aug/3/weird-world-of-llms/#tips-for-using-them
https://simonwillison.net/2023/Aug/3/weird-world-of-llms/#tips-for-using-them
https://arxiv.org/abs/2307.13106
https://arxiv.org/abs/2307.13106
https://arxiv.org/abs/2309.00384
https://arxiv.org/abs/2309.00384
https://github.com/Noxfr69/Text_image_classification
https://github.com/Noxfr69/Text_image_classification

	Introduction
	The dataset
	Data Limitations and Token Constraints

	Chat approach
	Setting up a Classification Task with LLMs
	Designing the Query for GPT
	Handling Varied Outputs from ChatGPT and Other LLMs

	Understanding ChatCompletion Output
	Accessing the Message Content

	Building the Text Classification Logic
	Building the Input
	Setting the Context Right
	Handling JSON Output

	Token Limitations
	Exploiting the JSON Output
	Loading and Structuring the Data
	Comparing with Ground Truth using ARI

	Comparing results
	TfidfVectorizer
	Word2Vec
	BERT
	USE (Universal Sentence Encoder)
	Results grand reveal

	Conclusion

